18.S096: Spectral Clustering and Cheeger’s Inequality

نویسنده

  • Afonso S. Bandeira
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

18.S096: Community dection and the Stochastic Block Model

Community detection in a network is a central problem in data science. A few lectures ago we discussed clustering and gave a performance guarantee for spectral clustering (based on Cheeger’s Inequality) that was guaranteed to hold for any graph. While these guarantees are remarkable, they are worst-case guarantees and hence pessimistic in nature. In what follows we analyze the performance of a ...

متن کامل

Coding Theory and Random Graphs APC 529

6 Spectral Graph Theory 16 6.1 Graph Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.2 Polynomial interlacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2.1 An Application to Expander Graphs . . . . . . . . . . . . . . . . . . 18 6.3 Connectivity as a Minimization Problem . . . . . . . . . . . . . . . . . . . . 20 6.4 Courant-Fisher and Alg...

متن کامل

Hierarchical Manifold Clustering on Diffusion Maps for Connectomics (MIT 18.S096 final project)

In this paper, we introduce a novel algorithm for segmentation of imperfect boundary probability maps (BPM) in connectomics. Our algorithm can be a considered as an extension of spectral clustering. Instead of clustering the diffusion maps with traditional clustering algorithms, we learn the manifold and compute an estimate of the minimum normalized cut. We proceed by divide and conquer. We als...

متن کامل

Diffusion Operator and Spectral Analysis for Directed Hypergraph Laplacian

In spectral graph theory, the Cheeger’s inequality gives upper and lower bounds of edge expansion in normal graphs in terms of the second eigenvalue of the graph’s Laplacian operator. Recently this inequality has been extended to undirected hypergraphs and directed normal graphs via a non-linear operator associated with a diffusion process in the underlying graph. In this work, we develop a uni...

متن کامل

Spectral Graph Theory Lecture 7 Cheeger ’ s Inequality

Today, we will prove Cheeger’s Inequality. I consider it to be the most important theorem in spectral graph theory. Cheeger’s inequality has many variants, all of which tell us in some way that when λ2 of a graph is small, the graph has a cut of small conductance (or ratio or sparsity). Recall that in Lecture 5 we proved: Theorem 7.1.1. Let G = (V,E) be a graph and let LG be its Laplacian matri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015